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Abstract. A continuous age-structured model of cannibalistic insect
populations is constructed and analyzed. The model is a continuous
analog of the model used in the recent work of Costantino et al. in
which discrete modeling, mathematical analysts, statistical techniques,
and laboratory experiments were used to demonstrate the presence of
nonlinear dynamics, including chaos, in laboratory Tribolium cultures.
A special case of the continuous model (no larva-on-egg cannibalism)is
analyzed and the results are compared to the analogous special case of
the discrete model.
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1. Introduction

One of the most important issues in population biology concerns the
observed complex fluctuations of population numbers in time. The
premise that the fluctuations might be largely due to deterministic
nonlinearities rather than stochastic noise has stimulated much inter-
est and discussion. The hypothesis that natural populations might in
fact exhibit chaotic dynamics is contrary to classical notions and has
been particularly controversial. Experimental verification or falsifica-
tion of the existence of nonlinear dynamics in populations is difficuit
due to the problems associated with connecting models with data, and
those encountered in manipulating ecological systems [1, 2, §, 16, 22].

Costantino, Cushing, Dennis, and Desharnais [2-9, 17, 21] have
recently tested nonlinear population theory by analyzing a discrete
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mathematical model of the flour beetle Tribolium, statistically connect-
ing it to data, and conducting laboratory experiments designed both to
validate the model and document its predictions. They used the age-
structured nonlinear Leslic model

Lt + 1) = bA{t) e~ cali~cadlt
Pt +1)= (1~ p)L(t)
Alt + 1) = P{t)e™ 40 + (1 — p) A1)

(termed the “LPA model”). L{t) denotes the number of feeding larvae,
P(t) denotes the number of nonfeeding larvae, pupae, and callow
adults, and A(t) denotes the number of adults. Since each of the L and
P life stages requires approximately 14 days, the discrete time unit in
the model is taken to be two weeks. b > 0 denotes the average number
of larvae recruited per adult per unit time in the absence of cannibal-
ism, p, p, > 0 are the larval and adult probabilities per unit time of
dying from causes other than cannibalism, and the exponentials repres-
ent the probabilities per unit time that individuals survive cannibalism.
The egg stage, which has four to five day duration, was omitted in the
LPA model.

By manipulating adult mortality rate in the laboratory, they were
able to demonstrate transitions in beetle populations between periodic
2-cycles, equilibria, and aperiodic oscillations as predicted by the
model. They also documented transitions between equilibria, invariant
loops, chaos, and 3-cycles, as well as the presence of “saddle phe-
nomena” in the data. In this way, they have shown the presence of
nonlinear dynamics in populations.

In order to realize their goals, the Costantino et al. team had to link
a model to data with unprecedented thoroughness. In the process, they
produced a population model thoroughly validated in its guantitative
as well as qualitative predictive successes. The continuous analogs of
discrete Leslie models are McKendrick-von Foerster type partial
differential equation (PDE) models. (Some of the mathematical con-
nections between these two famous classes of models are made rigor-
ousin [18, 19, 24].) McKendrick models have been studied extensively,
both analytically and numerically, in the literature; however, there is
little connection to data, and certainly none to the extent of the
Costantino et al. work. One would naturally wish to know if the
popular McKendrick-type models can describe fiour beetle population
dynamics as successfully as the discrete Leslietype LPA model, and
whether they predict the same nonlinear transitions for Tribolium.

The first step in this program is to study the direct analogs of the
discrete modeling and compare results. This includes mathematical
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analysis and numerical studies of the continuous analog, as well as
statistically connecting it to the data. The next step is to enhance the
McKendrick model (for example, by including an egg stage, by making
the birth rate age-dependent, by including a size-structuring variable
and individual growth rate submodel, etc.) and producing new hy-
potheses to be tested in the laboratory.

This paper starts the project by deriving and analyzing a continu-
ous analog of the discrete LPA model. In Sect. 2 we begin with
a continuous age-structured model which includes an egg stage, and
then formally shrink the egg stage duration to zero in order to obtain
a continuous model analogous to the discrete one.

The first mathematical analyses of the discrete LPA model, appear-
ing in [8], studied the special case ¢ ; = 0 (no larva-on-egg cannibal-
tsm). Sect. 3 contains the mathematical analysis of the continuous
version of this special case. Equilibria and Hopf bifurcations to
periodic solutions are studied both analytically and numerically.
Section 4 summarizes these mathematical results, compares them to
the analogous results in the discrete setting, and rephrases them in
more biological terms.

In later work, we will make statistical connections between the
continuous analog of the LPA model and the laboratory data, study
the general continuous model with and without an egg stage and
various other modifications, compare the results with the predictions
of the discrete. LPA model, and generate new testable laboratory
hypotheses.

2. Continuous model

Hastings and Costantino presented a continuous Tribolium model
in [13, 14, 15]. They explained oscillatory behavior in data sets
by mathematically modeling and analyzing egg-larval cannibalistic
interactions. They showed that changes in the duration of the larval
stage relative to that of the egg stage can give rise to Hopf bifurcations
of periodic solutions, and suggested that the resulting bifurcation
diagrams be “confirmed” by placing experiments in various regimes
of parameter space. This experimental methodology of “confirming”
bifurcation diagrams was eventually realized in the work of Costantino
et al. as described in the Introduction; however, the LPA model was
discrete, with fixed lifestage durations and no egg stage.

The continuous model finally constructed in this section will be an
analog of the LPA model, and will thus differ from the Hastings and
Costantino model in {13-157] by having fixed lifestage durations and
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no egg stage. We first, however, present the continuous model includ-
ing an egg stage, and then formally derive the model without an egg
stage by shrinking the egg stage duration to zero.

2.1. Continuous model with egg stage
The continuous age-structured Tribolium model proposed by

Costantino and Desharnais [1] and Hastings and Costantino [13-15]
is a nonlinear McKendrick-type PDE:

dp. . Op, _
E"t” + _5; - 55(‘5‘, ps(ta )) P
P, 0} = BA (1) (1)
0, a) = ¢(a)
where
CeaAe(t} + Ce!Ls(t) a § &
AL E<azap
55((1: pa(t: )) - cpaAa(t) ap < a é aAa
Vg Ay < d
and

Et)=| plt,a)da
0

L= | put, a)da
JE

P =| p.t,a)da
A= | p.t, a)da.

Wiy

Here p.(t, a) is the per unit age density of beetles at time ¢ > 0 and
age a 2 0,¢ > 0 is the duration of the egg stage, ap > ¢ is the age of
pupation, and a4 > ap is the age of maturation. E(t), L.{t), P,(t), and
A,(t) are the numbers of eggs, larvae, pupae, and adults at time ¢. § > 0
is the per capita birth rate, and 4, is a per capita death rate due to
cannibalism in the case of eggs and pupae, and due to non-cannibalis-
tic “natural” mortality rates v, v, > 0 in the case of larvae and adults.
(Under laboratory culture conditions, the natural mortality rates of
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eggs and pupae are low [17. In this model, as in the LPA model, they
are assumed to be zero.) The parameters C,,, Cop ¢pe = 0 represent
coefficients of adult-on-egg, larva-on-egg, and adult-on-pupa cannibal-
ism respectively. Finally, ¢(a) = 0 gives the initial age distribution of
the population.

When ¢ = a;, where a; denotes the length of the flour beetle egg
stage (about four or five days), we refer to (1) as the “cELPA model”.
The ¢cELPA model is a first order nonlinear hyperbolic PDE with
a nonstandard boundary condition (for the basic theory of these kinds
of equations, see Webb [25]).

We will discuss the connections between the LPA parameters and
the continuous model parameters at the end of Sect. 2.2.

2.2, Continuous model without egg stage

In order to obtain a continuous model analogous to the discrete LPA
model, we now formally shrink the egg stage to zero (i.e., let e > 0} in
model (1). In so doing, we follow the same procedure as Diekmann
et al. in [10] (see also {12]).

We may write (1) in equivalent integral equation form by integrat-
ing along the “characteristics”

de

Fa

da

=1 ®
dp, .

dS = 58(a: pa(tv ))pe(t: a)

After solving the first two equations in (2} with initial conditions
H0) == t4, a(0) = 0 for the case ¢ = a and initial conditions #(0) == 0,
a(0) == a, for the case t < a, one can integrate the third equation to find

BA(t — a) expi:——r d,(0, pt —a+a,-)) do], O<a=t
plts @) = ao
@{a —t) exp [—J d.(a, plt—a+e,) dcr], a>t

a-—-

3)
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From (3) one can see that the fraction of eggs produced at time
t — a which survive egg cannibalism and hatch is

exp[——f Coud(t —a+ a)de —J Col it —a+ o) do"] 4
0 0

The main difficulty in shrinking the egg stage to zero is that egg
survivorship (4} approaches one as ¢ — 0 unless we simultaneously
increase the cannibalism rates C,, and C, As ¢ 0, we wish to
increase C,, and C,; in such a way as to preserve the appropriate egg
survivorship. Therefore, we assume C,, and C,,; are proportional to 1/e,
in particular C,, = ap¢../¢ and C,; = ayc./e, where ¢, ¢ = 0 are the
egg cannibalism rates when ¢ = a;.
We now take the formal limit of (3) as ¢ — 0. Note that

J dlo, pt —a+ 0, N do = CQ“J At —a+o)do
0

0

+ Ce,[ Lt —~a+ o)do
0

1
= ceaabj At — a + eo)do
0

3
+ celaLj Lt — a 4+ ¢o)do
o]

g-+10

—> [ceaAo(t —a) + cuLlolt — a)]aL.

Therefore, the formal limiting system is

p()(ta a) =
ﬁAO (t - a}exp[""(celLO (t — d) + Cea-/iO(zl - a)}aL
- réo(a, poft —a + a,°)) dcr} O<a=st
¢}
@la — t}exp{ — r dola, polt —a + ¢,7) dcr], ax>t
\ a—t (5)
where

v C<aza

dola, polt, )= { cpaAolt) ap<asay (6)
Va a4 < 4.
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After dropping subscripts, we sce that the limiting system (5) solves
the McKendrick equation

dp 8
§+£zmme
plt, 0) = pA() exp[ — (caLl(t) + coaA())a] Y]

p0, a) = @la)

where & is given by (6). We refer to (7) as the “cLPA model”, and take it
as the continuous version of the discrete “LPA model”.

One can see from an investigation of (5} that the density-indepen-
dent mortalities p; and , in the discrete model are related to v; and
v, by the survivorship formulas e "% = 1 — g and e '*= =1 — p,.
Similar considerations show ¢, .o, and ¢,, m the LPA model are
analogous 10 ¢y, Cedy, and cp(as — ap) in the cLPA model. The
larval recruitment rate b in the discrete model corresponds to f in
the continuous model. (Of course, if the cLPA and LPA models are
parameterized with the same data, one does not expect their cor-
responding parameters to have the exact same values, because of
the difference in modeling methodology. For a discussion of the corre-
spondence between discrete and continuous model parameters in the
context of an ongoing Tribolium experiment in which larval recruit-
ment is periodic and beetle cohorts are synchronized, see {18]. In this
special case, the LPA model essentially becomes a stroboscopic snap-
shot of the cLPA model at 2 week intervals, and the correspondence of
parameters is mathematically exact.)

In later papers, the cELPA and c.PA models will be analyzed in
general. In this paper, however, we focus on the special case ¢ = 0 in
the spirit of the early discrete work.

3. Analysis of Special Case ¢;= 0
3.1. Equivalent system of FDEs

Since we wish to compare our results with those from the discrete
model, we want to follow the numbers of animals in the age classes
L{t), P(t), and A(¢) instead of the density distribution p(t, a). Integrat-
ing the cLPA model] (with ¢4 = 0)

op  Op

% +5 — d(a, p}p

p(ta 0) = BA(t) exp[wceaA(t)aL]
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p(0, a) = ¢(a) 8)

A(t)ifmp(f, a) da

v O0<azap
0a, p(t, N={ cpoAlt) ap<a<a,
v, a, < da

with respect to age a over the age intervals [0, a,], [ap,a,], and
[as ) gives rise to a system of functional differential equations
(¥DEs) in L), P(t}, and A(t) . For example,

Ly~ - f " (e, a)da = — L(%’ (@) + 8(a, p(s, (s, a}) da

0
=p(50) — p(t, ap) — vL{p)
= fA(t) exp[ — CaaA)ar]~ p(t, ap)—v,L(1)

From Equation (5) we have

Pt ap) = BA(t — ap) exp[—c, Aft — ap) a;, — v,ap)]

when t = gp and

Pt ap) = @(ap — 1) exp[—wi]

when t < gp.
In this manner we obtain the following system of FDEs:

o (0= BAG) exp L—cua 0] — L) — it ap
eXPL —Cea At — apay — viap)

%’:_) (8) = BAG— ap)exp[ —c., A(t — ap)ay — vap] — CraA)P(2)
—BA( ~az)exp [ ~ Cead(t — )y — v,y ©)
— ¢y f “dl-ay+0) do]

dA
i ()= BA(t — ag)exp [M—ceaA(t —~ag)a;, — viap

—_ cpafaAA(l ~ a4+ o) do‘] — v, A{t)

ap
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for t z a4, where the initial functions (L(z), P(t), A(¢) for t € [0, a,] are
restricted to the solutions of

o () = BAG) expL ~ceaaz] — WL

_ {ﬁA(f — ap)eXp[ — € At — ap)ay — viap] t 2 ap

plap — yexp[ — vt] t<ap
dP
_d?(t) ==
BA(t — ap)exp[ —c, At — ap)ay, —viap] t = ap AR\P
plap — tyexp[ —vt] t<ap 0PE

! a

(p(aA—t)exp[mv,(ap—_a,i+t)—-cpaj A(t—aA+a)da}
O<ay—t=Za .

B e (10)

ola, — t)exp[ - cpaj ’ At — ap + cr)dcr]

aq =

\ ap<aA—'t

a,

’qo(aA e t)cxp[ — Vilap ~ a +t) — cpaf

ap

At — ay + o) do“]

id 0<aA~—t§ap

o=

LF

(P(aA - t) pr[ - cpaj

a1t

At —a, + o) dO’J

ap<aA—t

~ v, A{t)

3.2. Eguilibria

The equilibrium equations for (9} are

pAexpl—ceada (1 — exp[ — vap]) ~ v, L = 0 (11)
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BAexpl — c.oday — viap] (L —exp[ — cpalts — ap) A — cpa AP =0
(12)
BAexp[ — caday — viap — cpalag — ap)A] ~v,4 =0,  (13)
Henceforth the “naught” subscript will refer to equilibria. There are
two equilibria: the “trivial solution” (0, 0, 0) corresponding to extinc-

tion of the population, and a unique nontrivial equilibrium (Lo, Po, 40)
given by

A = — yyap — In (Va/ﬁ)
O Cpaltts — ap) + Coaty

vﬂ
Lo =-*[exp(naz) ~ 1] doexp[epdolas —ar)]  (14)
[

Vg
PO = "Em {exp {CpaAO(aA - a’P)] - 1]

4

The nontrivial equilibrium is positive if and only if the larval recruit-
ment rate § exceeds a certain critical value f§,,; specifically, if and only if

B> Bur e vae™™.

Furthermore, each component of (Lg, Py, Ap) 1s a strictly increasing
function of f—that is, the steady state value of each lifestage increases
with larval recruitment rate.

The equilibrium age distribution

ﬁAO exp[ - CeaAOaL - ‘Jga}, 0 g a < dp
BAgexp[ — cadoar — viap — cpaAO(a ~ ap}],

pola) ={ apsa<ay
BAoexp[ — caadoar — viap — cpadolay —~ ap) — va(a — aq)l,
a4 <4

(15)

of the cLPA model (8) can be recovered from (Lo, Py, 4o) by means of
(5) or (10). Conversely, the equilibrium (L, Pq, Ao} can be recovered
from the equilibrium age distribution po(a) by means of

*lp

Lo= | pola)da

a4
Py= | pola)da
Ag = pola) da.

i
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3.3. Simplifving the linearization

Note that the adult equation in the FDE model (9) is decoupled
{(unfortunately this will not be the case if ¢,; > 0). It would be nice if we
could justify focusing our analysis on just this one equation. Our
stability analysis will rest on linearization theory — inspection of the
eigenvalues (roots of the characteristic equations of the linearizations).
The results in this section will allow us to study the linearization of the
¢LPA model (8) by studying the linearization of the adult equation in
the FDE model (9).

Let pofa) be an equilibrium solution of (8) and 4, = [ py(s) ds.
The linearization of the equation for the variation p — pg 1s

%%C + %E = —y(a)x(t, a) — T(G)LA x(t, 8) ds

x(t, 0) = (L — coutp Ao) exp [ — Contiz Ao] j x(t, ) ds

where
v O<azZap
@) = (cpdo ap<a=ay
Ya as < d
0 O<aZap
(@) =< Cppola) ap<a s ay
4 as < da

Note that in the definition of 7(a), po(a) becomes fAqexp[ — cqp Aoay
— wiap — ¢paAola — ap)] by means of (15).
In the following theorem we show that linear PDEs of the form
ép  Op ® :
T T ag = T H@pela)— V(a)J plt, s)ds {16}

m
o

p(1,0) = y j o(t, a) da

m
pla)=x forazm

with maturation delay m > 0 have the same characteristic equations as
linear FDEs of the form

ggf— (t) = '})A(t — m)g"‘f?#(a)da__ e"f'g#(a)daJ\ v(a)A(tﬂm + a)ej;p(s)dsda
o}
o (17)
~ KA(R) — A f @) da

m
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McKendrick PDEs in which all nonlinearities arise from depend-
encies on the total number of adults often have linearizations of the
form (16). The lincar FDE (17) arises from linearizing the FDE ob-
tained by integrating such a nonlinear PDE over the adult age class.
Theorem 1 says, roughly, that if the only nonlinearities in a McKendrick
age-structured PDE model with maturation delay m arise from depend-
encies on the total number of adults, then, locally, one only need study the
dynamics of the adult subpopulation.

In particular, we will apply Theorem 1 to the cLPA model (8) by
choosing

v O<a=gap
pla)={cpdo ap<azay,
¥, a4 <a
0 O<agap
v(a) = {cpafAoexp[ — coudoar—viap—cpdola—ap)] ap<azay
0 a, <a

7= B(l — ceatip Ao)exp[ — CoaarAo]

M= ay

K=, (18)
Theorem 1. The linear PDE (16) and the linear FDE (17) have the same

characteristic equation on the set {i e C|Re(d) > —«}.

Proof. Substitution of the exponential Ansatz A(f) = ce* into Equa-
tion (17) gives rise to the characteristic equation

nt
A= .yemj:u(a}daemlm = emj:u(a)dae—lmj v(a) ei‘.uej:u(s)ds da
Q

—K - va(a) da. (19)

m

To find the characteristic equation of the PDE (16), we first convert
it into equivalent integral equation form by integrating along its
characteristics:

o, @) = p(t — a, 0)e Jer@dz

- Rawie J j v(@) e p(t —a 4 o, y)dyde (20)

OJm
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where
o

6.0 =7 ptt.c) da e
If we substitute (20) into (21), set p(t, a) = Q(a)e®, and utilize
0(0) = y[*0(a) da from Equation (21), we obtain the characteristic
equation

—Am
1= e'I:F{“)d“[y ¢

w pm
h _ e—-x{awm)em).av({x)eﬁ.a ejo,u(z)dz docda
A+ K m Jo

o a
- J j e T g Aay () e plon()dz dada}

m v

. e~ Am g~ Am rm §
o e"‘je.u(a)d‘:z e v(a)e).ae[cy(z}dz de
At A+Kjo

- J J‘ g raTm o= day () g gloniad dadtx:}
for Re(4} > — k. Upon further simplification, we obtain

Z + K= e_,f:.u(ﬂ)d& [.ye“lm__em;{mf
Q

)

v(o)e* eloni=)dz da]

~—v[mv(oc) dot. ]

m

We now use Theorem 1 to study the stability of the trivial and
positive equilibria.

3.4, Stability of rivial equilibrium

At the extinction equilibrium (L, Py, A¢) = (0, 0, 0), the linearization
X(t) = Bx(t — as)e "% — v, x(t)

of the adult FDE (9c¢) obtains from linearizing (9¢) or from substituting
(18) into (17). The characteristic equation is

A= fe e Ry,

This equation has a unique real root 1, which is negative when
B < B =v,e"*, and positive when 8 > f,,.
The real and imaginary parts of any complex root a -+ ip with
¢ # 0 must satisfy the equations
o = fe” e cos(pay) —~ v,

@ = — fle" e " sin(pa,)
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and from these equations it is easy to deduce that o < iq. By [11]
(Chapter VII, Theorem 6.8),

Theorem 2. The trivial solution (0, 0, 0) is locally asymptotically stable
when B < B., and unstable when > B,,.

Recall that the nontrivial equilibrium (L, Po, 4y} is positive if and
only if § > B... Typically, we expect an exchange of stability between
the trivial and nontrivial equilibria at §,,. In the next section we verify
this; 1.e., we show the positive equilibria are stable for f greater than
(but close to) .

3.5. Stability of positive equilibrium

The linearization

a4

x'(t) = x{t — a,)v,(1 — coatir Ao) — VanaAoj x(t —ay + a)do—v,x(t)
of the adult FDE (9¢c) at the positive equilibrium 4, obtains from
linearizing (9c) or from substituting (18) into (17). The characteristic
equation is

A= v,{1 — ceqap Agle ™ — vacpaAOJ e de — v, (22)
Equation (22) is linear in v, and v, 4,, and hence may be written in
terms of real and imaginary parts as

wol2)-()

for a 2 x 2 matrix M (e, ¢} where 4 = o + @i

Recall from Equation (14) that the adult equilibria A, are in one-
one correspondence with the parameter f; in fact f§ can be eliminated in
the model equations by means of

ﬁ = ﬁcr exp(A()[Cea ar, + Cpu(aA - aP):!)‘ (24)

Ag is thereby introduced as a model parameter, and we can study the
roots of the characteristic equation as functions of the adult equilib-
rium level 4. .

In order to prove the stability of small positive equilibria, we must
show all the eigenvalues 4 are in the left half complex plane for small
values of 4, > 0. We first prove a series of lemmas.
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Lemma 3. There exists a zero eigenvalue if and only if Ag = 0, In fact,
Sor sufficiently small Ay Z O, there is a largest real eigenvalue L, which is
negative if Ag > 0 and zero if Ag = 0.

Proof. The first statement follows from Equation (22). Also, Equation
(22) can be written as F(4) = G(4) where

F(l) = A vy A V,Cpado A1 — e 7RO Z 40

Ve + vncpaAO(aA - ap) A=0
G(A) = v,e ™ *(1 — cpap Ao)

are continuous functions of A For sufficiently small 45 =0, G is
a strictly decreasing function of A which crosses the vertical axis at
G{0) = v,(1 — c.ap . Ap) > 0. Also, there exists an ¢ > 0 such that for
sufficiently small A5 = 0, F is a strictly increasing function of 4 on
[~ & oo] which crosses the vertical axis at F(0) = v,[1 -+ ¢ 040
(a4 — ap)] = G(0). Thus, for sufficiently small A, = 0, the graphs of
F and G must intersect at some 4 = A, which is negative if 4, > 0 and
zero if Ag = 0. O
Equation (23) may be written

o= va(i = Coa a’LAO)emaad COS((PaA) = Va

Val ﬂA (i a
i os e cos[g(as — ap]
— & — pe " Y sin[o(ay — ap)]) (25)
@ = - va(l - ceaa'LAO) g Sin((PaA)
Va€ aA —ofas—a
ol i (p?‘a (pe™*~ % cos[p(a, — ap)]

— ¢ + ae” " P sin[p(a, — ap)]) (26)
in order to prove:

Lemma 4. Let Ay = 0. Then the only eigenvalue with zero real part is
the zero eigenvalue. All nonzero eigenvalues are in the left half complex
plane, and are uniformly bounded away from the imaginary axis.

Proof. Let Ay = 0. Then Equations (25) and (26) become ‘
o= v,e" " cos{pay) — v, (27

@ = —ve *sin{pay). (28)
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If o =0, then cos{pa,) = 1 and so sin{pa,) = 0; hence ¢ = 0. If ¢ > 0,
then by (27) « < v,cos(pa,) — v, = 0 which is a contradiction, and so
nonzeroe eigenvalues must have negative real part. If there were a se-
quence of nonzero eigenvalues {«, + ip,}:%, in the left half complex
plane with «, - 0, then by (27) cos{p,a,) -» 1 and so sin{g,a,) - 0. By
(28), @, — 0. However, small nonzero values of ¢, cannot satisfy equa-
tion (28) because the two sides of the equation would have opposite
signs. Thus, from some point on in the sequence, ¢, = 0 which intro-
duces a sign contradiction into equation (27). O

Lemma 5. There exists q positive real number M such that for all
sufficiently small Ay > 0, all eigenvalues A with positive real part satisfy
|[A] < M.

Proof. If not, then there is a sequence of positive equilibria { 4,,} with
Agp, — 0 and a corresponding sequence of eigenvalues {&, + ip,} in the
right half complex plane such that &, ~» o0 or|eg,| ~ oo. The reader can
check that the right hand sides of both Equations (25) and (26) are
therefore bounded as »n — oo, while at least one of the ieft hand sides is
unbounded. [

Lemma 6. There is no sequence of eigenvalues in the right half complex
plane approaching zero as Ao — 07,

Proof. Suppose there exists a sequence of positive equilibria {A4,,} with
Ay, — 0 and a corresponding sequence of eigenvalues {a, + ig,} in the
right half complex plane such that «, — 0 and ¢, -» 0. Small positive
Aoy, small nonnegative «, and small |@,| make the right hand side of
(25) negative, which is a contradiction. O

The following stability theorem utilizes the above lemmas and
continuity in verifying all eigenvalues are in the left half complex plane
for sufficiently small 4, > 0.

Theorem 7. For all sufficiently small Ay > 0O (that is, for all sufficiently
small § — B, > 0), the positive equilibrium (Lg, Po, Ag) of (9) is locally
asymptotically stable.

Proof. If not, then there exist a sequence of posttive equilibria {Ag,}
with 4, - 0 and a corresponding sequence of eigenvalues {1,} in the
right half complex plane. By Lemma 5, there exists M > 0 such that
|4 < M for all n, and so {4,} has a convergent subsequence. Without
Joss of generality we may assume {4,} converges. By Lemmas 3, 4 and
continuity, 4, — 0, which contradicts Lemma 6. : |

Thus, when larval recruitment exceeds ff, but is not too large, the
positive life-stage steady state predicted by the cLPA model (8) is stable.
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3.6. Loss of stability of positive equilibria via Hopf bifurcations

As parameters vary, roots of (22) may cross the imaginary axis in the
complex plane. The first such crossing of an eigenvalue into the right
half complex plane as A, increases from small positive numbers is
associated with loss of stability of the equilibrium 4,. This corresponds
to a Hopf bifurcation of periodic solutions if the eigenvalue crosses the
imaginary axis with nonzero speed (see [11], Chapter X, Theorem 2.7).
That is, population steady states of larger value may be unstable, and
the population may develop periodic cycling. The imaginary part ¢ of
the first eigenvalue which crosses the imaginary axis corresponds to the
frequency of the periodic cycle near the bifurcation point, and the
period of the cycle is given by 2n/g.

In this section we locate the boundaries in parameter space along
which the real part « of some eigenvalue vanishes — in other words, the
boundaries along which Hopf bifurcations may occur. In the Appendix
itis shown that, generically speaking, the first eigenvalue to cross these
stability boundaries does so with nonzero speed and hence gives rise to
a Hopf bifurcation.

Fix o = 0. Then Equation (23) becomes

me.o,” )=(2) 9)

Except at isolated values of ¢ for which |M(0, @)} = 0, we obtain v, and
vaA4o (and hence 4,) as functions of ¢ by

Va \ {0
(G)-weor() e

This yields the curves in (v,, 4o) space, parameterized by ¢, along
which Hopf bifurcations may occur (see [11], Chapter XI). After
algebraic simplification we obtain

cos(pa,) — 1
Aol@) = (‘PCA)
Coally, COS(Qa,) + ‘é‘a sin{p{a, — ap)]
and
ve(p) = _¢ (31)

Sin(@a (1 —copay Aole)) + %’ Agl@)(cos[@(as— ap)]— 1)

Both A4¢(p) and v,(p) are even functions of ¢ and so we need only
consider positive ¢ for which 44(p), v,(p) > 0.
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Fig. 1. <cLPA model with ¢y =0 Positive values of Ay(p) are generated when
@ c0s{28¢) < ~ rsin(14e). Parameter values are ap=4, ap=14, a,=28,
B =75 coa=00025 c4=0, v,= 000029, and v, =0022 Here r=c,/acel)
A and B ¢, = 0.00029 so r = 0.029; C and D ¢, = 0.0015 50 r = 0.15.

Agle} > 0 requires
@ cos(pay) < —rsinfp(ay — ap)] - (32

where 7 = ¢,,/(Ceqar). This ratio r of parameters will be used in Section 4
to compare our results with those in the discrete case.
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Fig. 2. cLPA model with c,; = 0: Possible configurations in (v, f) parameter plane of

boundaries aiong which some eigenvalue has zero real part. I, disappears for larger
values or r. Parameter values are ¢, = 4,4, = 14,0 4= 28, ¢, = 00025, ¢, = 0, and
vy = 0.022. Here r = cpaf{arco. A Cpa = 0.00029 s0 ¥ = 0.029; B ¢, = 0.0015 s0 r = (.15.

Henceforth, we take the parameters ap and a, to be the discrete
LPA beetle model estimations ap = 14 days and a, = 28 days, and we

take a;, = 4 days. When r is small (approximately r < 7/28), Inequality

(32) is satisfied on infinitely many ¢ intervals L., L,,

... which
alternately lie inside of and include the interval ((4n — 3)m/56,
(4n — 1)n/56), and ultimately “approach” said interval as n — oo, For

235
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Fig. 3. Discrete LPA model with ¢,; = 0: Possible configurations in {u,, b} paramester
plane of boundaries along whick some eigenvalue has zero real part. Here r=c,/c,,
and py=05128 A0<r<;Bi<r<2;C2<r<3Dr>3InAr=02;inB
re=1.6;in C, r=29 in D, r=90. (This figure is reprinted from [8] with the
permission of the publisher.)

larger r, the first interval L, disappears, and for successively larger #’s
successively more odd-subscripted intervals disappear (Fig. 1).

In order for v,{¢) to be positive for ¢ e L,, the denominator of (31)
must be negative. As @ approaches (from the right) the left endpoint of
an interval L,, Ao(¢) approaches positive infinity, and sin(28¢) is
positive and close to one. Thus, the denominator of {31) approaches
negative infinity, and so v,(¢) approaches zero from above.

Thus, for each interval L,, there exists an interval I, < L, having
the same left endpoint as L, such that the parameters 4,(¢) and v,{¢)
are positive on I,. For ¢ € I, a curve I, is generated parametrically in
the (v, Ao) plane. These I', are the stability boundaries.
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The stability boundaries in (v,, 4,) space may be transformed
into boundaries in (v, f) space by means of Equations (24) and (31).
This is done in Fig. 2 to admit comparison with the discrete analog
in Fig. 3.

4. Summary

We have derived a continuous model (7) analogous to the discrete LPA
model, and have mathematically analyzed the special case ¢,; == 0. The
results of our analysis parallel the analysis in [8] of the corresponding
special case of the discrete model (Table 1).

Both models admit the zero equilibrium (0,0,0) and a unique
nontrivial equilibrium (Lg, P, o) . The trivial solution gives up its
stability to a branch of positive equilibria bifurcating from zero at the
given critical value of the larval recruitment rate. In both models, the
trivial equilibrium (0, 0, 0} is unstable if and only if a positive equilib-
rium exists; and in both models the positive equilibrium is an increas-
ing function of larval recruitment and is stable for small Agp. That is,
both models always predict extinction of the population when larval
recruitment is below some critical value (so there are no Allee effects).
Whenever larval recruitment exceeds this critical value, there is
a unique positive steady state. The value of this steady state tends to
zero as the larval recruitment approaches the critical value from the
right, and increases with increasing larval recruitment rate. The steady
state is stable for small population sizes when the recruitment rate is
near the critical value.

Table 1
Discrete LPA model (c,, = 0) FDE ¢L.PA model (¢, = Q)
In(i ~ p) — In(u,/b) In{e™™*) — In{v,/p}
Ay = Ag =
Cpa ¥ Con Cpal@q — @p) + €y
Ha Ya
Ly= (”1"_#_) A, ex?(cpaAo) Ly =v_ {exp(vap)—~134, expie,,Agla, ~ap)]
B H
vﬂ
Py = p,Agexple,,4g) P, = r(exp[cho(aA — apil ~ 1)
P
bcrﬁ Fa ﬁcrﬁvaev(h
- M
Equilibria — invariant loops Equilibria -» periodic sol.s, high period

Equilibria -» 2-cycles Equilibria -» periodic sols, low period
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Fig. 4. cLPA model with ¢, = 0: Parameter values are a; = 4, ap = 14, a, = 28,
Coa = 0.0025, ¢y = 0, and v, = 0.022. Here P Cpaf{@rCea)- A Time series with B =10,
v, == 0.06, and ¢,, = 0.00029. This is in the region of large period periodic solutions in
Fig. 2A. B Time series with § = 10, v, = 0.3, and ¢, = 0.00029. This is in the region of
small period periodic solutions in Fig. 2A. C Bifurcation diagram generated along the
line § = 40 in Figure 2B. Here c,, = 0.0015. Stable equilibria undergo a Hopf bifurca.

tion to periodic solutions, which then undergo another bifurcation back to stable
equilibria.
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For small » (r=cp,/c,, in the discrete model, r=c¢,,/(c.oa;) in the
continuous model), loss of stability of the positive equilibrium occurs
as certain boundaries are crossed in the (u,, b) (Fig. 3) or (v,, f) (Fig. 2)
parameter plane. Thus, when the adult-on-pupa cannibalism rate is
small compared to adult-on-egg cannibalism rate, the models predict
destabilization of the steady state as the adult mortality rate increases.
On the other hand, adult-on-pupa cannibalism rates which are large
compared to adult-on-egg cannibalism rates promote stability of the
steady state.

In the discrete model, the equilibrium can bifurcate into an invari-
ant loop or a 2-cycle. In the continuous model, the equilibrium can
bifurcate into a periodic solution of higher period or a periodic
solution of lower period. Note the similarities between the I,
and I'; boundaries in the continuous model (Fig. 2), and the b,
and b, boundaries in the discrete model (Fig. 3). For small values
of r,I'y and T, both exist, and correspond to the bifurcation of
periodic solutions of larger and smaller periods (i.e. smaller and larger
frequencies ), respectively. In the discrete case, the boundaries b, and
b, correspond to invariant loops (with some period-locked cycles) and
2-cycles. For larger r, T’y and b;" disappear. However, the last two
possibilities in the discrete case (Fig. 3C and 3D) do not appear to
correspond to analogous configurations in the continuous case since
I'; cannot reappear for larger values of r.

The boundary I'; approximately corresponds to 0.07 < ¢ < 0.16,
which gives periodic cycles of periods 39-90 days. Measured in time
units of 2 weeks, cycles near this boundary have periods ranging from
1.4 to 3.2. Boundary I', approximately corresponds to 0.28 < ¢ < 0.39,
that is, periodic cycles of periods 16-22 days (periods 0.57-0.79 when
measured in units of 2 weeks) (see Fig. 4). While the locations of the
I', boundaries in (v, f) parameter space depend on the values of
the other parameters, the I', frequency intervals only depend on the
parameters ap and a, (which we have fixed at ap = 14 daysand a, = 28
days). Therefore we can, for example, compare boundaries I'; and b, in
terms of period. The discrete LPA model predicts the advent of 28 day
cycles (“2-cycles”) on the boundary b,, while the continnous cLPA
model predicts cycles with period between 16 and 22 days on the
boundary I';.

We are currently using statistical techniques to connect the general
cLPA model (with ¢, > 0) to data. Once the cLPA model is para-
meterized, it will be used to generate bifurcation diagrams analogous
to those generated by the discrete LPA model. These final state
diagram predictions will be compared to those of the discrete model,
and to the data gathered by Costantino et al. In this way we will test
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the robustness of the results obtained by Costantino et al. as well as test
the predictive capabilities of the ¢cLPA model.
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Appendix

Equation (29) may be written

0= Ua(l - ceaaLAO) COs ((Pafl) = Uy —

VaCpado .
fp % sin[g(as — ap)] (33)

Uy cpa A{J (

@ = —0,(1 — couap Ao} sin{pa,) — v, — cos[o(as—ap)] — 1)

(34)

Theorem 8. Let I, be a curve in the (v,, Ag) parameter plane along which
the real part o of some eigenvalue vanishes. Then the set of @ ¢ I, for
which dufdv, 5 0 on T, is open and dense in I,.

Proof. By continuity, the set of ¢ € [, for which o' =da/0v, = Oon T, is
closed in I, , and so the set of ¢ € I, corresponding to o’ £ O on I’ is
open in I,. To see that this set is also dense in I,, suppose &’ = 0 on
I', for all ¢ in some open interval J < I,. By differentiating Equations
(25) and (26} with respect to v, (holding A, constant), evaluating at
o =0 and o =0, and simplifying using Equation (33), we can show
that

28¢2sin28¢)[1 —ceaar Ao] — Cpado sin[14¢] + 1dc,, Agp cos[14p] =0

(35)
forall g e J.
We can now solve (35) for 4, in terms of ¢ along the curve ', on
interval J. This, along with the equation for 4, along T, in (30), can be
used to eliminate 4, and obtain the identity

€ pa $(14¢) cO8(28¢9) — 14, cos(14¢)cos(28¢) — 28¢,,a; ¢ sin(28¢)
— o SIN(14@) + 14c,, ¢ cos(14¢) — 28¢,,¢ sin(14¢) sin(28¢) = 0

on J. An application of product trigonometric identities yields the
identity

3 €pa $IN(42¢) — 28¢,,a;,07 sin(28¢) — 3 ¢,, sin(14¢)
+ TCpatp cOs(42¢) — Tc,pa ¢ cos(l4g) =0
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-on J. This 1s a contradiction since the five functions in this proposed

identity are linearly independent on J.

Therefore, there is no open interval J < I, such that &' = 0 along
T, for all ¢ € J. Thus, the set of ¢ € I, giving rise to o = 0 on T, is
dense in I, M

The set D of fixed Ay > 0 corresponding to some boundary T, in
the (v, 4o} plane as v, varies from left to right must have the form
D =[d, coJorD =(d, o). For Ay € D, let v}* denote the least v, such
that the ordered pair (v,, Ao) lies on some curve I,. (The existence of
a least such v, can be deduced by contradiction from the fact that for
fixed Ag, v (¢) is unbounded as ¢ - o) We wish to show that for
generic fixed Ao e D, the stable equilibrium 4, undergoes a Hopf
bifurcation at (vZe, 4,) as v, is varied from left to right. First, however,
we need a lemma stating that the leftmost I', boundries do not intersect
each other in a dense fashion.

Lemma 9. The set T ={Ag e D||3n3m (vix, Ag)e T,nT,} is not dense
in any open interval in D.

Proof. Tt suffices to show that T is not dense in any bounded open
interval in D . Suppose SCD is a bounded open interval and T S is
dense in S. The set {(vj*, Ag)||4q € S} is bounded in the (v, 4,) plane,
and so the right hand side of Equation (34) is bounded as well (recall
@ 2 n/56). Thus, the left hand side ¢ is also bounded, which implies
that only a finite number of curves I', gencrate the intersections
indexed by the set TnS. Without loss of generality, there exist two
boundaries T'; and T'; such that the set {4 S|(vie, dg) e ;AT b s
dense in S. By continuity, I'; =T, on the set {(vie, Ao)|doe S3.
A rather tedius investigation of Equation (30) shows this to be a
contradiction. ]

Theorem 10. Let H be the set of A, D for which dofdv, +0 at
V, = Vie, where o + i is some eigenvalue such that o = 0 when Vg = Vi,
Then H is open and dense in D.

Proof. H is openin D since its complement is closed. To show that H is
dense in D, we suppose there exists an open interval U < D such that
HnU = ¢. Now, by the previous lemma, there exists ann e Z* and an
open interval V, = U such that (vie, Ag)eT, for all dpe V,. This
section of the curve I', which is indexed by 4, € V,, corresponds to an
open ¢ - interval J = I, . Moreover, du/év, = 0 on T, for all p e J,
which violates Theorem 8. Thus, every open interval U © D contains
points of H, and so H is dense in D. (]
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